Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Nature ; 617(7961): 616-622, 2023 May.
Article in English | MEDLINE | ID: mdl-36972684

ABSTRACT

Steroid hormone receptors are ligand-binding transcription factors essential for mammalian physiology. The androgen receptor (AR) binds androgens mediating gene expression for sexual, somatic and behavioural functions, and is involved in various conditions including androgen insensitivity syndrome and prostate cancer1. Here we identified functional mutations in the formin and actin nucleator DAAM2 in patients with androgen insensitivity syndrome. DAAM2 was enriched in the nucleus, where its localization correlated with that of the AR to form actin-dependent transcriptional droplets in response to dihydrotestosterone. DAAM2 AR droplets ranged from 0.02 to 0.06 µm3 in size and associated with active RNA polymerase II. DAAM2 polymerized actin directly at the AR to promote droplet coalescence in a highly dynamic manner, and nuclear actin polymerization is required for prostate-specific antigen expression in cancer cells. Our data uncover signal-regulated nuclear actin assembly at a steroid hormone receptor necessary for transcription.


Subject(s)
Actins , Formins , Nuclear Proteins , Receptors, Androgen , Transcription, Genetic , Humans , Actins/metabolism , Androgen-Insensitivity Syndrome/genetics , Androgen-Insensitivity Syndrome/metabolism , Androgens/pharmacology , Androgens/metabolism , Formins/metabolism , Gene Expression Regulation/drug effects , Nuclear Proteins/metabolism , Polymerization/drug effects , Prostate-Specific Antigen/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Receptors, Androgen/metabolism , RNA Polymerase II/metabolism , Signal Transduction/drug effects , Steroids/metabolism , Steroids/pharmacology , Testosterone/analogs & derivatives , Transcription, Genetic/drug effects
2.
Sex Dev ; 16(4): 252-260, 2022.
Article in English | MEDLINE | ID: mdl-35764069

ABSTRACT

INTRODUCTION: NR5A1 is an essential transcription factor that regulates several target genes involved in reproduction and endocrine function. Pathogenic variants in this gene are responsible for a wide spectrum of disorders/differences of sex development (DSD). METHODS: The molecular study involved Sanger sequencing, in vitro assays, and whole exome sequencing (WES). RESULTS: Four variants were identified within the NR5A1 non-coding region in 3 patients with 46,XY DSD. In vitro analyses showed that promoter activity was affected in all cases. WES revealed variants in SRA1, WWOX, and WDR11 genes. DISCUSSION/CONCLUSION: Evaluation of clinical and phenotypic significance of variants located in a non-coding region of a gene can be complex, and little is known regarding their association with DSD. Nevertheless, based on the important region for interaction with cofactors essential to promote appropriated sex development and on our in vitro results, it is feasible to say that an impact on gene expression can be expected and that this may be correlated with the DSD pathophysiology presented in our patients. Considering the number of cases that remain elusive after screening for the well-known DSD related genes, we emphasize the importance of a careful molecular analysis of NR5A1 non-coding region which is commonly neglected and might explain some idiopathic DSD cases.


Subject(s)
Disorder of Sex Development, 46,XY , Disorders of Sex Development , Humans , Mutation , Disorder of Sex Development, 46,XY/genetics , Phenotype , Steroidogenic Factor 1/genetics , Steroidogenic Factor 1/metabolism , Sexual Development/genetics , Disorders of Sex Development/genetics
3.
Hum Mutat ; 43(3): 420-433, 2022 03.
Article in English | MEDLINE | ID: mdl-34979047

ABSTRACT

Transporter-dependent steroid hormone uptake into target cells was demonstrated in genetically engineered mice and fruit flies. We hypothesized that mutations in such transporters may cause differences in sex development (DSD) in humans. Exome sequencing was performed in 16 genetically unsolved cases of 46,XY DSD selected from an anonymized collection of 708 lines of genital fibroblasts (GF) that were taken from individuals with incomplete virilization. Selection criteria were based on available biochemical characterization of GF compatible with reduced androgen uptake. Two unrelated individuals were identified with mutations in LDL receptor-related protein 2 (LRP2), a gene previously associated with partial sex steroid insensitivity in mice. Like Lrp2-/- mice, affected individuals had non-descended testes. Western blots on GF confirmed reduced LRP2 expression, and endocytosis of sex hormone-binding globulin was reduced. In three unrelated individuals, two with undescended testes, mutations in another endocytic receptor gene, limb development membrane protein 1 like (LMBR1L), were detected. Two of these individuals had mutations affecting the same codon. In a transfected cell model, mutated LMBR1L showed reduced cell surface expression. Our findings suggest that endocytic androgen uptake in complex with sex hormone-binding globulin is relevant in human. LMBR1L may play a similar role in androgen uptake.


Subject(s)
Androgen-Insensitivity Syndrome , Androgen-Insensitivity Syndrome/genetics , Androgens , Animals , Female , Genomics , Humans , Male , Mice , Mutation , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Receptors, Cell Surface/genetics , Sex Hormone-Binding Globulin/genetics , Sexual Development/genetics
4.
Clin Endocrinol (Oxf) ; 96(2): 165-174, 2022 02.
Article in English | MEDLINE | ID: mdl-34668586

ABSTRACT

OBJECTIVE: Being born small for gestational age (SGA) is frequently associated with unexplained disorders of sex development (nonspecific DSD) in boys. Little is known about their future growth, puberty and testicular function. Our objective is to determine the long-term endocrine outcome of boys born SGA who have a nonspecific DSD. DESIGN: Boys with a nonspecific DSD born SGA and appropriate for GA (AGA) were retrieved through the International Disorders of Sex Development registry and retrospective data collected, based on a spreadsheet containing 102 items. PATIENTS AND MEASUREMENTS: In total, 179 boys were included, of which 115 were born SGA and 64 were born AGA. Their growth and pubertal development were compared. Serum LH, FSH, testosterone, AMH and inhibin B levels in infancy and puberty were analysed to assess testicular function. RESULTS: At 2 years of age, 30% of SGA boys had incomplete or absent catch-up growth. Boys born SGA also had higher LH during minipuberty and lower testosterone in stimulation tests (p = 0.037 and 0.040, respectively), as compared to boys born AGA. No differences were observed in timing or course of puberty or end-pubertal hormone levels. CONCLUSIONS: Almost one out of three SGA boys with a nonspecific DSD experiences insufficient catch-up growth. In addition, our data suggest dysfunction of infantile Leydig cells or altered regulation of the hypothalamic-pituitary-gonadal axis in SGA boys during childhood. Sex steroid production during puberty seems unaffected.


Subject(s)
Infant, Small for Gestational Age , Puberty , Gestational Age , Humans , Infant, Newborn , Male , Retrospective Studies , Testosterone
5.
Mol Cell Endocrinol ; 523: 111146, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33385475

ABSTRACT

Individuals with complete androgen insensitivity syndrome show a female genital phenotype despite 46, XY gonosomes and the presence of androgen producing testes. This clinical observation indicates the resistance of the body and its cells to androgens like testosterone. At the molecular level, this hormone resistance is caused by hemizygous loss of function mutations in the X-chromosomal androgen receptor (AR) gene. Partial forms of androgen insensitivity syndrome (PAIS) show different degrees of virilisation largely depending on the remaining activity of the AR. Nevertheless, the phenotypic outcome can be variable even in presence of the same mutation and in the same kindred indicating the presence of further influencing factors. Importantly, the majority of clinically diagnosed PAIS individuals do not bear a mutation in their AR gene. A recent assay using the androgen regulated gene apolipoprotein D as biomarker is able to detect androgen insensitivity on the cellular level even in absence of an AR gene mutation. Using this assay a class of AIS without an AR-gene mutation was defined as AIS type II and suggests that unidentified cofactors of the AR are responsible for the PAIS phenotype. Here we outline the scientific progress made from the first clinical definition of AIS over biochemical and molecular characterizations to the concept of AIS type II. This review is based on publications in the PubMed database of the National Institutes of Health using the search terms androgen insensitivity syndrome and androgen receptor mutation.


Subject(s)
Androgen-Insensitivity Syndrome/genetics , Humans , Male , Mutation/genetics , Receptors, Androgen/chemistry , Receptors, Androgen/genetics , Sexual Development/genetics
6.
J Clin Endocrinol Metab ; 104(10): 4630-4638, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31180485

ABSTRACT

CONTEXT: Molecular mechanisms causing the broad phenotypic diversity of external masculinization in individuals with 45,X/46,XY mosaicism are poorly understood. OBJECTIVE: Analysis of androgen receptor (AR) expression and function as a putative influencing factor for the genital phenotype in patients with 45,X/46,XY mosaicism. DESIGN: Measurement of AR mRNA expression levels, AR activity [DHT-mediated APOD (apolipoprotein D) induction] and cellular 45,X/46,XY ratios in genital skin fibroblasts from individuals with 45,X/46,XY mosaicism and male reference individuals, and determination of the external virilization scale from individuals with 45,X/46,XY mosaicism. SETTING: University hospital endocrine research laboratory. Patients or Other Participants: 30 genital skin fibroblast cultures (GFs) from male reference individuals and 15 GFs from individuals with 45,X/46,XY mosaicism. INTERVENTION: None. MAIN OUTCOME MEASURES: Determination of AR mRNA expression and AR activity in male reference GFs and 45,X/46,XY GFs and correlation of the obtained data with the cellular 45,X/46,XY ratios and the patients' external virilization scale. RESULTS: In 6 of 15 45,X/46,XY GFs, AR mRNA expression and AR activity were significantly lower compared with those in the 46,XY reference GFs. In this subgroup of reduced AR mRNA expression, a positive trend was seen between AR mRNA expression and the percentage of XY-positive cells. Furthermore, we found a positive correlation between AR activity and the external virilization scale in the 15 45,X/46,XY GF samples (P = 0.03). CONCLUSION: Our results suggest that AR expression and AR activity might influence the phenotypic variability seen in patients with 45,X/46,XY mosaicism.


Subject(s)
Fibroblasts/metabolism , Mosaicism , RNA, Messenger/metabolism , Receptors, Androgen/genetics , Skin/cytology , Adolescent , Apolipoproteins D , Child, Preschool , Female , Foreskin , Genitalia , Gonadal Dysgenesis, Mixed , Humans , In Situ Hybridization, Fluorescence , Infant , Infant, Newborn , Male , Primary Cell Culture , Receptors, Androgen/metabolism , Scrotum , Sex Chromosome Disorders of Sex Development , Vulva , Young Adult
7.
J Clin Endocrinol Metab ; 103(12): 4617-4627, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30124873

ABSTRACT

Context: Inactivating mutations within the AR gene are present in only ~40% of individuals with clinically and hormonally diagnosed androgen insensitivity syndrome (AIS). Previous studies revealed the existence of an AR gene mutation-negative group of patients with AIS who have compromised androgen receptor (AR) function (AIS type II). Objective: To investigate whether AIS type II can be due to epigenetic repression of AR transcription. Design: Quantification of AR mRNA and AR proximal promoter CpG methylation levels in genital skin-derived fibroblasts (GFs) derived from patients with AIS type II and control individuals. Setting: University hospital endocrine research laboratory. Patients: GFs from control individuals (n = 11) and patients with AIS type II (n = 14). Main Outcome Measure(s): Measurement of AR mRNA and AR promoter CpG methylation as well as activity of AR proximal promoter in vitro. Results: Fifty-seven percent of individuals with AIS type II (n = 8) showed a reduced AR mRNA expression in their GFs. A significant inverse correlation was shown between AR mRNA abundance and methylation at two consecutive CpGs within the proximal AR promoter. Methylation of a 158-bp-long region containing these CpGs was sufficient to severely reduce reporter gene expression. This region was bound by the runt related transcription factor 1 (RUNX1). Ectopic expression of RUNX1 in HEK293T cells was able to inhibit reporter gene expression through this region. Conclusions: Aberrant CpGs methylation within the proximal AR promoter plays an important role in the control of AR gene expression and may result in AIS type II. We suggest that transcriptional modifiers, such as RUNX1, could play roles therein offering new perspectives for understanding androgen-mediated endocrine diseases.


Subject(s)
Androgen-Insensitivity Syndrome/genetics , DNA Methylation , Epigenetic Repression , Receptors, Androgen/genetics , Adolescent , Biopsy , Cells, Cultured , Child , Child, Preschool , Core Binding Factor Alpha 2 Subunit/metabolism , CpG Islands/genetics , Fibroblasts/metabolism , Genitalia, Male , HEK293 Cells , Humans , Infant , Infant, Newborn , Male , Mutation , Primary Cell Culture , Promoter Regions, Genetic/genetics , RNA, Messenger/analysis , RNA, Messenger/metabolism , Receptors, Androgen/metabolism , Skin/cytology , Skin/metabolism , Skin/pathology
8.
J Clin Endocrinol Metab ; 102(1): 232-241, 2017 01 01.
Article in English | MEDLINE | ID: mdl-27809697

ABSTRACT

Background: Dehydroepiandrosterone sulfate (DHEAS) and 17-hydroxypregnenolone (17OHPreg) are important for understanding the Δ5 pathway (e.g., in adrenarche and obesity). Although mass spectrometry has become the state-of-the-art method for quantifying steroids, there are few comprehensive age-, sex-, and pubertal stage-specific reference ranges for children. Aims: To develop a sensitive and reliable ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method for simultaneous quantification of DHEAS and 17OHPreg and to establish entire age-, sex- and pubertal stage-specific reference ranges in children. Methods: A total of 684 children, 453 (243 female, 210 male) with normal body mass index (BMI; <90th) and 231 (132 female, 99 male) obese subjects (>97th), were categorized into 11 age groups, and age- and Tanner stage (PH)-specific reference ranges were determined. Results: The limit of detection was 0.05 nmol/L for 17OHPreg and 0.5 nmol/L for DHEAS. Levels of both steroids declined after the neonatal period. Comparisons with RIA assays (Siemens, Munich, Germany) (DHEAS) and an in-house kit (17OHPreg) revealed 0.95 and 0.93, respectively, as coefficients of determination. Although DHEAS-generally higher in boys-increased continuously starting at 3 to 6 years, 17OHPreg remained largely constant. In obese patients, both were significantly elevated, also in part after alignment to Tanner stages (PH). Conclusions: UPLC-MS/MS is sensitive and reliable for quantifying DHEAS and 17OHPreg. Our data support differential maturation of CYP17 during adrenarche with successively increasing 17,20-lyase activity but largely constant 17α-hydroxylation activity. Endocrine interpretation of 17OHPreg and DHEAS must consider differential patterns for age, sex, pubertal stage, and BMI.


Subject(s)
17-alpha-Hydroxypregnenolone/analysis , Chromatography, Liquid/methods , Dehydroepiandrosterone Sulfate/analysis , Obesity/physiopathology , Puberty/metabolism , Steroids/metabolism , Tandem Mass Spectrometry/methods , Adolescent , Age Factors , Biomarkers/analysis , Body Mass Index , Case-Control Studies , Child , Child, Preschool , Female , Follow-Up Studies , Humans , Infant , Infant, Newborn , Male , Prognosis , Sex Factors , Steroid 17-alpha-Hydroxylase/metabolism
9.
PLoS One ; 11(4): e0154158, 2016.
Article in English | MEDLINE | ID: mdl-27110943

ABSTRACT

A subset of patients with monogenic disorders lacks disease causing mutations in the protein coding region of the corresponding gene. Here we describe a recurrent germline mutation found in two unrelated patients with complete androgen insensitivity syndrome (CAIS) generating an upstream open reading frame (uORF) in the 5' untranslated region (5'-UTR) of the androgen receptor (AR) gene. We show in patient derived primary genital skin fibroblasts as well as in cell-based reporter assays that this mutation severely impacts AR function by reducing AR protein levels without affecting AR mRNA levels. Importantly, the newly generated uORF translates into a polypeptide and the expression level of this polypeptide inversely correlates with protein translation from the primary ORF of the AR thereby providing a model for AR-5'UTR mediated translational repression. Our findings not only add a hitherto unrecognized genetic cause to complete androgen insensitivity but also underline the importance of 5'UTR mutations affecting uORFs for the pathogenesis of monogenic disorders in general.


Subject(s)
5' Untranslated Regions , Androgen-Insensitivity Syndrome/genetics , Fibroblasts/metabolism , Germ-Line Mutation , Protein Biosynthesis , Receptors, Androgen/genetics , Androgen-Insensitivity Syndrome/metabolism , Androgen-Insensitivity Syndrome/pathology , Base Sequence , Fibroblasts/pathology , Frameshift Mutation , Gene Expression Regulation , Genes, Reporter , Humans , Luciferases/genetics , Luciferases/metabolism , Male , Open Reading Frames , Primary Cell Culture , Receptors, Androgen/metabolism , Sequence Analysis, DNA
10.
J Proteome Res ; 14(2): 1315-29, 2015 Feb 06.
Article in English | MEDLINE | ID: mdl-25546135

ABSTRACT

Interactions between transcription factors and genomic DNA, and in particular their impact on disease and cell fate, have been extensively studied on a global level using techniques based on next-generation sequencing. These approaches, however, do not allow an unbiased study of protein complexes that bind to certain DNA sequences. DNA pulldowns from crude lysates combined with quantitative mass spectrometry were recently introduced to close this gap. Established protocols, however, are restricted to cell lines because they are based on metabolic labeling or require large amounts of material. We introduce a high-throughput-compatible DNA pulldown that combines on-bead digestion with direct dimethyl labeling or label-free protein quantification. We demonstrate that our method can efficiently identify transcription factors binding to their consensus DNA motifs in extracts from primary foreskin fibroblasts and peripheral blood mononuclear cells (PBMCs) freshly isolated from human donors. Nuclear proteomes with absolute quantification of nearly 7000 proteins in K562 cells and PBMCs clearly link differential interactions to differences in protein abundance, hence stressing the importance of selecting relevant cell extracts for any interaction in question. As shown for rs6904029, a SNP highly associated with chronic lymphocytic leukemia, our approach can provide invaluable functional data, for example, through integration with GWAS.


Subject(s)
DNA-Binding Proteins/metabolism , DNA/metabolism , Proteomics , Adolescent , Cell Line , DNA/blood , DNA-Binding Proteins/blood , Humans
11.
EMBO J ; 23(15): 3144-53, 2004 Aug 04.
Article in English | MEDLINE | ID: mdl-15241476

ABSTRACT

The final irreversible step in the duplication and dissemination of eukaryotic genomes takes place when sister chromatid pairs split and separate in anaphase. This is triggered by the protease separase that cleaves the Scc1 subunit of 'cohesin', the protein complex responsible for holding sister chromatids together in metaphase. Only part of cellular cohesin is bound to chromosomes in metaphase, and it is unclear whether and how separase specifically targets this fraction for cleavage. We established an assay to compare cleavage of chromatin-bound versus soluble budding yeast cohesin. Scc1 in chromosomal cohesin is significantly preferred by separase over Scc1 in soluble cohesin. The difference is most likely due to preferential phosphorylation of chromatin-bound Scc1 by Polo-like kinase. Site-directed mutagenesis of 10 Polo phosphorylation sites in Scc1 slowed cleavage of chromatin-bound cohesin, and hyperphosphorylation of soluble Scc1 by Polo overexpression accelerated its cleavage to levels of chromosomal cohesin. Polo is bound to chromosomes independently of cohesin's presence, providing a possible explanation for chromosome-specific cohesin modification and targeting of separase cleavage.


Subject(s)
Cell Cycle Proteins/metabolism , Chromatin/metabolism , Nuclear Proteins/metabolism , Protein Kinases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Animals , Chromosomal Instability , Chromosomal Proteins, Non-Histone , Endopeptidases/metabolism , Fungal Proteins , Kinetics , Phosphoproteins , Phosphorylation , Protein Serine-Threonine Kinases , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Separase , Solubility , Cohesins
12.
J Biol Chem ; 279(2): 1191-6, 2004 Jan 09.
Article in English | MEDLINE | ID: mdl-14585836

ABSTRACT

Sister chromatid cohesion is resolved at anaphase onset when separase, a site-specific protease, cleaves the Scc1 subunit of the chromosomal cohesin complex that is responsible for holding sister chromatids together. This mechanism to initiate anaphase is conserved in eukaryotes from budding yeast to man. Budding yeast separase recognizes and cleaves two conserved peptide motifs within Scc1. In addition, separase cleaves a similar motif in the kinetochore and spindle protein Slk19. Separase may cleave further substrate proteins to orchestrate multiple cellular events that take place during anaphase. To investigate substrate recognition by budding yeast separase we analyzed the sequence requirements at one of the Scc1 cleavage site motifs by systematic mutagenesis. We derived a cleavage site consensus motif (not(FKRWY))(ACFHILMPVWY)(DE)X(AGSV)R/X. This motif is found in 1,139 of 5,889 predicted yeast proteins. We analyzed 28 candidate proteins containing this motif as well as 35 proteins that contain a core (DE)XXR motif. We could so far not confirm new separase substrates, but we have uncovered other forms of mitotic regulation of some of the proteins. We studied whether determinants other than the cleavage site motif mediate separase-substrate interaction. When the separase active site was occupied with a peptide inhibitor covering the cleavage site motif, separase still efficiently interacted with its substrate Scc1. This suggests that separase recognizes both a cleavage site consensus sequence as well as features outside the cleavage site.


Subject(s)
Cell Cycle Proteins/chemistry , Endopeptidases/chemistry , Saccharomycetales/enzymology , Amino Acid Motifs , Amino Acid Sequence , Anaphase , Binding Sites , Chromosomal Proteins, Non-Histone , Kinetochores/metabolism , Microtubule-Associated Proteins/chemistry , Mitosis , Molecular Sequence Data , Mutagenesis, Site-Directed , Mutation , Nuclear Proteins , Phosphoproteins , Protein Binding , Protein Structure, Tertiary , Saccharomyces cerevisiae Proteins/chemistry , Separase , Sequence Homology, Amino Acid , Substrate Specificity
13.
Curr Biol ; 12(12): 973-82, 2002 Jun 25.
Article in English | MEDLINE | ID: mdl-12123570

ABSTRACT

BACKGROUND: Sister chromatid separation and segregation at anaphase onset are triggered by cleavage of the chromosomal cohesin complex by the protease separase. Separase is regulated by its binding partner securin in two ways: securin is required to support separase activity in anaphase; and, at the same time, securin must be destroyed via ubiquitylation before separase becomes active. The molecular mechanisms underlying this dual regulation of separase by securin are unknown. RESULTS: We show that, in budding yeast, securin supports separase localization. Separase enters the nucleus independently of securin, but securin is required and sufficient to cause accumulation of separase in the nucleus, where its known cleavage targets reside. Securin also ensures that separase gains full proteolytic activity in anaphase. We also show that securin, while present, directly inhibits the proteolytic activity of separase. Securin prevents the binding of separase to its substrates. It also hinders the separase N terminus from interacting with and possibly inducing an activating conformational change at the protease active site 150 kDa downstream at the protein's C terminus. CONCLUSIONS: Securin inhibits the proteolytic activity of separase in a 2-fold manner. While inhibiting separase, securin is able to promote nuclear accumulation of separase and help separase to become fully activated after securin's own destruction at anaphase onset.


Subject(s)
Cell Cycle Proteins/metabolism , Endopeptidases , Fungal Proteins/physiology , Nuclear Proteins/physiology , Saccharomyces cerevisiae Proteins , Binding Sites , Catalysis , Cell Cycle Proteins/antagonists & inhibitors , Cell Nucleus/enzymology , Enzyme Activation , Enzyme Inhibitors/metabolism , Peptide Hydrolases/metabolism , Saccharomycetales , Securin , Separase
SELECTION OF CITATIONS
SEARCH DETAIL
...